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Abstract

A mathematical model of a crack along a thin and soft interface layer is studied in this paper. This type of interface
could arise in a ceramic support that has been coated with a layer of high surface area material which contains the
dispersed catalyst. Asymptotic analysis is applied to replace the interface layer with a set of effective contact conditions.
We use the words ‘““imperfect interface” to emphasise that the solution (the temperature or displacement field) is allowed
to have a non-zero jump across the interface. Compared to classical formulations for cracks in dissimilar media (where
ideal contact conditions are specified outside the crack), in our case the gradient field for the temperature (or dis-
placement) is characterised by a weak logarithmic singularity. The scalar case for the Laplacian operator as well as the
vector elasticity problem are considered. Numerical results are presented for a two-phase elastic strip containing a finite
crack on an imperfect interface. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Motivation for this work arises from the study of the fracture of ceramic catalytic monolith combustors
that are being incorporated into new prototype designs of gas turbines. The possibility of crack propaga-
tion in the ceramic support and methods of calculations have already been described in Antipov et al.
(1999). The ceramic monolith consists of an extruded structure that contains a large number of parallel
channels, e.g. consisting of: 62 cells/cm?; each cell 1.1 x 1.1 mm? square; with an open frontal area of 66%.
The ceramic surface is coated with a high surface area material (e.g. y-Al,O3) which contains the dispersed
catalyst. It is in the catalytic layer (also known as the washcoat), where the combustion reactions take place
(e.g. CH; + 20, — CO; + 2H,0), and the energy associated with this highly exothermic reaction is re-
leased. In the application in a gas turbine combustor, temperatures of the catalyst layer could vary from
ambient conditions (when the turbine is not working) up to 1100°C. It is important that the catalyst layer
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remains firmly bound to the ceramic support structure during this process. If it cracks and shears, then cat-
alyst will be lost from the monolith which would (a) result in a lost in performance of the combustor, and
(b) lead to possible damage of components downstream of the combustor. Further information on catalytic
combustion and the use of ceramic monolith supports is available in Hayes and Kolaczkowski (1997).
Asymptotic study of cracks in a cellular structure of a catalytic monolith combustor is included in Antipov
et al. (2000).

As the surface of the monolith is covered by a layer of catalyst, this gives a two-phase structure. A
scanning electron micrograph (SEM) of the face of a catalyst coated channel is illustrated in Fig. 1, taken at
a tilt angle of 15° to view the surface of the catalyst layer. In examining the surface, cracks are clearly visible
in the layer. The cracks would have occurred as a result of (a) shrinkage of the coated layer (after drying
and calcining), and (b) differences in coefficients of thermal expansion as the material was exposed to a wide
range of temperatures. The presence of a crack on the surface is not considered necessarily to be a problem,
however, if the crack propagates and the interface is sheared then this will lead to catalyst loss.

It is documented in engineering literature that the damage of ceramic structures is accompanied by
“crack bridging”. In the model presented here we assume that the bridging effect exists along the whole
interface surface between the substrate and the layer of catalyst (often, we shall also use the words “im-
perfect interface” or ““soft adhesive’), and, in addition, a crack with zero tractions on its faces is introduced
along the interface contour. We study the problems of heat transfer (or anti-plane shear) and elasticity
problems for this two-phase structure.

Mathematical models of interfacial cracks are well developed in the literature for the cases when ideal
contact conditions prevail on an interface surface outside a crack. Plane problems for cracks in dissimilar
media were studied by Rice and Sih (1965) and by England (1965). The work of Willis (1971) introduces the
integral equation approach for analysis of interfacial cracks including the cases of three-dimensions and
dynamic cracks. Asymptotic models of elastic adhesive joints were introduced by Klarbring (1991),
Klarbring and Movchan (1995, 1998) and Avila-Pozos et al. (1999). The adhesive was modelled as a thin
and soft layer where effective contact conditions involve continuity of tractions and a linear relation be-
tween the traction components and the displacement jump across the adhesive. Laminated structures with
linear interfaces were also studied by Bigoni et al. (1997).

In the present work we analyse mathematical models of cracks along imperfect interface boundaries and
make an emphasis on the asymptotic behaviour of the solution and its derivatives near the crack ends and
at infinity. In contrast to the results already published in the literature, on the interface boundary (outside
the crack) we allow for a non-zero displacement jump specified as a function of traction components. The
presence of this condition affects the asymptotics of the displacement and stress components in the vicinity
of the crack ends.

Fig. 1. SEM of a face of a catalyst coated monolith (photograph supplied courtesy of University of Bath, UK).
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The structure of the paper can be described as follows:

In Section 2 we discuss the asymptotic model of a thin and soft layer (adhesive) and derive effective
interface conditions.

Section 3 presents an exact solution of the Dirichlet problem for the Laplacian for a strip containing a
semi-infinite crack along the imperfect interface. In terms of physical applications, this model corresponds
to the heat transfer problem for a strip with temperature prescribed on the upper and lower parts of the
surface, zero flux at the crack boundary, and a flux proportional to the temperature difference ahead of the
crack. Alternatively, this model can be interpreted as the anti-plane shear problem of elasticity with a thin
and soft layer of adhesive placed ahead of the interfacial crack. The problem is reduced to a scalar Wiener—
Hopf functional equation that is solved exactly. The behaviour of the solution at the end of the crack is
found by the same technique that was used by Antipov (1993). The method is based on the asymptotic
expansion of the integral representation of the solution and on Abelian type theorems. Analysis shows that
the temperature gradient (or shear stress for the elasticity model) has a logarithmic singularity at the crack
tip. At the same time, the normal derivative of the temperature is bounded and discontinuous at the crack
tip along the interface and the tangential derivative tends to infinity as a logarithmic function. It is known
that for the case of ideal contact ahead of the crack, the singularity is much stronger: the temperature
gradient components have the order O(r~!/?), as the distance r to the crack tip tends to zero. At infinity, the
solution decays exponentially.

In Section 4 we study the Neumann boundary value problem for the domain of the same configuration
as above. The qualitative structure of the asymptotics in the vicinity of the crack tip does not change.
However, the behaviour of the solution at infinity is different from the case when the temperature values are
specified on the upper and lower parts of the boundary of the strip. The exact solution is found by the
factorisation method. Explicit asymptotic formulae for the temperature jump are obtained when x — +oo.
It is shown that the temperature jump decays exponentially at infinity along the interface outside the crack
and is bounded at infinity along the crack.

In Section 5 we analyse a solution of the model problem in a semi-infinite crack in a two-phase plane
with the phases being separated by a line of imperfect interface. In contrast with previous sections, it is
shown that the solution is characterised by algebraic asymptotics at infinity.

After the analysis of exact solutions obtained for the case of boundary value problems formulated for the
Laplace operator, we turn to a plane strain problem for a two-phase elastic strip with a finite crack along an
imperfect interface in Section 6. The problem is formulated in terms of a system of singular integral
equations. An accurate numerical algorithm is proposed and implemented to obtain the values of the
displacement components and stress in a neighbourhood of the crack. The stress components are shown to
be bounded in the vicinity of the crack ends.

Numerical results are discussed in Section 7.

2. Asymptotic model of adhesive joints

Consider two bodies 2, and Q_ connected through a thin interface layer Q, of thickness ¢ (see Fig. 2).
Assume that the material occupying ©., Q_ and € is characterised by the shear moduli x,, u_ and p, = eu
respectively, where u is of the same order as u, and p_.

2.1. Anti-plane shear

For the case of anti-plane shear, we consider the displacement field (0,0, u(x, y)) with the only non-zero
component being the z-component, which depends on x and y only. The displacements u*, = and u*) in
Q,, Q_ and Q, satisfy the following equations
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) H_ ay :u’() ay
where

ry={(xy): y=¢/2},

o ={(y): y= —¢/2}.

Let = ¢ 'y, so that within @y, |y| < ¢/2 and hence |¢z| < 1/2. In terms of x and ¢

LU0 | o

Fig. 2. The adhesive joint.

U = ——=0.
VUl = e T e
Let u)” denote the leading term of «©. Then
o2u :
612 =0 in Q

and therefore

uy) = C\” (x) + ¢y (x),

with C, C, being functions of x only. Using the displacement contact conditions in Egs. (2.3) and (2.4) we

deduce
CEO) — %(qu(xl , 0) +u (.X] 5 0))7
¥ = u* (x1,0) — u (x1,0)

and the traction contact conditions in Egs. (2.3) and (2.4) yield

ou* o

Nia(xlvo) =R T p(u* (x1,0) — u” (x1,0))

to leading order. It is shown that the leading order term of tractions is continuous across the interface layer
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ou™ Ou~
T(xy) == M+§(x1»0) = #-a(xho) (255)
and it is proportional to the displacement jump across the interface
T(x1) = p(u™ (x1,0) —u (x1,0)). (2.6)

In the text below, the quantity u will be called the stiffness coefficient of the interface layer €.

2.2. Plane strain with isotropic interface layer

For the case of plane strain the materials occupying Q, and Q. are characterised by the Lamé elastic
moduli Ay = €4, py = eu and A4, p,, where A, u have the same order of magnitude as A, p.
The displacements vectors #* and u®) satisfy the Lamé equations of equilibrium

Li(ui) =0 1in Qi,

(2.7)
Lo(u®) =0 in Qy, (2.8)
where
Li(u)=p Vu+ (le+ p)VV -1
and
Lo(u®) = 62(%0 . 0 )E)ZL(‘))+€1< 0 XOJ”‘O)EBZL(O)JF <;”°+2”° 0 ) 62u<0).
o+ 21y ) o 2o+ o 0 Ox Ot 0 Mo ) Ox?
The interface contact conditions on Iy have the form
w=u?, ¢Pw)=6?u®) onr,, (2.9)

@) onr_

(2.10)
where 62 = (a1, 05,)". It follows from Eq. (2.8) that the leading term u" of & is linear with respect to

uy) = € (x) +1C5 (v),
where the vector functions C 50), C§°> are defined from the displacement contact conditions in Egs. (2.9) and
(2.10)
CV = Yu" (x,0) +u (x,0), CY =u*(x,0)—u (x,0).
It follows from the traction conditions in Egs. (2.9) and (2.10) that

2

) 1 0 o 0 .
o o =2 o = (0 o) = ()@ O o)
to leading order.
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2.3. Plane strain with anisotropic interface layer

Here, we assume that the material in €, is anisotropic characterised by the constitutive relation

0 0
gy i1 Ci2 C13 €1
0 _ 0
0y =€| Cnn Cx»n (23 € )
V24!, €13 €3 €3 2¢),

where C = (¢;;) is the Hooke’s matrix. The equations of equilibrium in €, have the form

0 0 0 0
T - — )40 = i
D <6x’6y>CD<6x’6y>u 0 in Q,

where D is the matrix differential operator specified by

2 0

o 0 a

D AV A = 0 oy
Ox "0y 123 138
V23 V2 &

Then the vector of tractions 6\ is

1 0 o
a2 @) = pr0,1)cp( 2 2 )y o [ 20 vEen ) WY
Ox 0y B ot

Similar to the previous (isotropic) case, we show that the leading term of #* is linear in ¢, the tractions
6 are continuous across the interface and depend linearly on the displacement jump, i.e.

1 1
_ 5€C33 5C23 _
oD W) o) = 0D W )] o) = (%623 @22 )(u*(x, 0) —u (x,0)). (2.12)

The relations (2.5), (2.6), (2.11) and (2.12) give the limit boundary conditions on the interface.

3. The Dirichlet problem for a strip with a semi-infinite crack along the imperfect interface

Here, we consider the problem of anti-plane shear for the case when the upper and lower sides of the
strip are fixed and the crack surface is subject to given tractions. The alternative physical interpretation is
related to distribution of temperature in the strip whose exterior surface is kept at a constant temperature,
and the heat flux is specified on the crack faces.

3.1. Mathematical formulation

Let a three-phase strip contain a semi-infinite delamination crack. Ahead of the crack a thin layer of soft
adhesive exists, and following the analysis of Section 2, it will be replaced by the discontinuity line where
the jump in displacement is proportional to tractions (see Fig. 3). Formally, the problem is set as follows

Viu(x,y) =0, |x]<oo, —b<y<0, 0<y<a, (3.1)

u(x,a) =u(x,—b) =0, |x| < oo, (3.2)
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y

Crack Imperfect interface X

Fig. 3. Strip with semi-infinite crack along the imperfect interface.

Ou Ou =40
Uy =— =U_— =pul_"y, x>0, 33
+ ay =10 ay — [ ] 0 ( )
Ou Ou
Uy =— =p_ — =plx), x<0, (3.4)
+ay y=+0 ay y==0

where u,, u_ denote the shear moduli of the elastic material occupying the upper and lower parts of the
strip; p(x) characterises the shear load applied to the crack faces; u is the stiffness coefficient of the interface
layer (see Section 2). We seek the solution with the finite energy

&) = / Vu dxdy. (3.5)
Rx[—b,a]

3.2. Exact solution of the problem

First, consider an auxiliary problem for the upper part of the strip (0 < y < a)

Viu(x,y) =0, |x|]<oo, 0<y<a, (3.6)
u(x,a) =0, |x| < oo, (3.7)
2 o, ki< (38
— =2(x), [|x| < oo, :
'u+ ay y=+0

where for negative x the function 2 is given by 2(x) = p(x), and for x > 0 this function is proportional to
the displacement jump 2(x) = uy(x),
7(x) = u(x, +0) — u(x, —0).
Applying the Fourier transform with respect to x

wt) = [ " ry) o dx (3.9)

o0

we obtain the boundary value problem for an ordinary differential equation, which has the following
solution
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_ P,sinha(a —y)

0 . 3.10
pyocosh(oa) <y<a (3.10)

uy(y) =

Here and in the text below the subscript index a denotes the Fourier transform. In a similar way, we
formulate the auxiliary problem for the lower part of the strip (—b < y < 0) and find

_ P,sinha(b+y)

. = — . 11
() \_cosh(ob) b<y<0 (3.11)
Thus,
7/
X“:MQ(_H))_”&(_O):_%(tanhaa+tanhab). (3.12)
o U e

Note that the displacement jump function y(x) is unknown everywhere along the real axis.
We introduce a function yy with supp y(x) € (—o0,0), and rewrite the conditions (3.3) and (3.4) in the
form

Ou
,uia(x, +0) = uy(x) + ¥(x), |x| < oo. (3.13)
After taking the Fourier transform with respect to x
Py = Uly + P (a), (3.14)
where
0 e
& (o) =y, :/ (&) de. (3.15)
After y, in Eq. (3.14) has been replaced by Eq. (3.12) we arrive at the Wiener—Hopf functional equation
& (0) = G(o)[u®" () + P~ ()], —o00 < o < +o00. (3.16)
Here,
o0 .. 0 ..
P (2) = / x(&)e*de, P (o) = / p(&)e*dg (3.17)
0 —00
and
G(“)l+u<tanh(xa+tanhab>' (3.18)
o My M

It is emphasised that the function @*(«) is analytic in the upper half-plane C* = { : Ima > 0} and the
functions P~ (o), ¢~ () are analytic in the lower half-plane C~ = {o : Ima < 0}. The boundary values of the
unknown functions ¢ and &~ satisfy the Eq. (3.16) on the real axis.

The function G(«) is even and has zero increment of arg G(«) along the real axis. It allows for the
following factorisation

_X7(B)
6D =5
where for real 8, X=(8) = X(B £ i0) and

B € (—o0, +00) (3.19)

X(a)_exp{ﬁ/ﬂo lnG(ﬁ)%}exp{%/oﬂC lnG(ﬂ)ﬁzi}7 v C\ R (3.20)

oo 2
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Note that the function G(a) given by Eq. (3.18) is bounded at the origin and tends to 1 as o« — +oo.
First we substitute Eq. (3.19) into Eq. (3.16) and then represent X ()P~ (a) as
X ()P (2) =P (a2) — ¥ (), a€R',
where ¥*(«) are the limit values of the function
L[ X (B)P(h)
T(d) = % . ﬁ .
It yields the following form of Eq. (3.16)
X ()0 () + ¥ (2) = uX ()@ () + PF () (3.22)

that is valid in the whole complex plane due to the continuation principle. We are looking for a solution
(7, V) integrable in the vicinity of the crack tip. According to Abelian type theorems (see Noble, 1988) the
functions @* () vanish as & — oo, & € C*. Also, X*(a) are bounded and ¥* () vanish as & — oo, & € C*.
Due to Liouville’s theorem, the entire function corresponding to Eq. (3.22) is identically zero. It follows
that the functions @*(a) can be represented in the form

dg. (3.21)

y- pt
) . CI U S S CO R (3.23)
X~ (o) X (o)
As an example, consider the case when the right-hand side p(x) in Eq. (3.4) can be approximated by
N
px) ~ > die™, @ >0, x<0 (3.24)
k=1
where dy, o, are constant coefficients: o; < o < - -+ < ay. Then, the function P~ (a) can be written explicitly
N
P)=Y - L
"l 100 + Ok

After we have evaluated the Cauchy integrals (3.21) the solution of the Wiener—Hopf problem in the case
(3.24) is reduced to the form

_ i & dX -
¢ (oc)——X_(a) ;cx—iak’ aeC, (3.25)
) —iZNj I PO T P (3.26)
u o — oy X+(a) ]’ ’ '
where
gy o [ dp
X=X <1ock>—exp{n/0 lnGw)ﬁzW},

ImX, =0, k=12,...,N.

After applying the inverse Fourier transform

1 +00

Y(x) ==— /_ o (x)e ™ da, x<O0,

2n J_o
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1

+o0
1(x) = 7 / O (x)e ™ da, x> 0. (3.27)

Using the substitution (3.25) and the analytic continuation X («) into the upper half-plane X~ (o) =
(G(a)) "X *(a), x € C*, we have

1 & G(oc e i
Znikz:;dk k/ X+(oc (o0 — o) da, x<0

Notice that X*(«) is analytic and does not have zeros in C*. The application of the residue theorem
yields

N 00 e eb,,x ) ux
W)Zd"{“x M P A T R } v

n=1
(3.28)
where a; = (n/2a)(2k — 1), by = (n/2b)(2k — 1). Here for the sake of simplicity we have assumed that
o #a,and oy £#b,, k=1,... N,foralln=1,2,...,N
In particular, as x — —oco
Y(x) = O(e™),
where Ay = min{n/2a,7/2b, 0, }.
It follows from Eqgs. (3.13) and (3.28) that for negative x the function y(x) has been determined as well
1(x) = pH{p(x) — Y(x)}.

For positive x, we use the second formula in Eq. (3.27) and obtain

7r'nx

Z DX Z )1G (—ia,) (0, + o)

where o, g, > 0, and —io, are the elements of the countable set of roots of G(a) in C”. We note that
Im (X*(+it)) = 0, = > 0 and Im (iG'(—is,)) = 0.

3.3. Asymptotics in a neighbourhood of the crack tip
To obtain the asymptotic behaviour of the functions y, ¥ and their derivatives in the vicinity of the origin

we consider first their Fourier transforms @*(«) (see Egs. (3.25) and (3.26)) and analyse these functions as
o — oo. To find the asymptotics of the functions X*, we represent the integral (3.20) in the form

1

In X () i{ /000 (m G(p) —%n(ﬁ)) %Jruol(a)}, (3.29)

where

1
uo—ﬂ(mﬂll), n(p) = {(1) gz }

1 W:Téun(l + o) +1In(1 — a)].

and
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The functions In(1 £ o) are analytic in the complex plane with the cut which joins the branch points
o= —1, a =1 and passes through infinity. The arguments @. of In(l + o) satisfy the condition —n <
O. <m Aso—ooand § =arg a € (0,n), we have @, — 0, 0_ — 0 — 7. If 0 € (—=,0) and & — oo then
O, —0,0_—0+m.

Thus, the integral /(o) exhibits different behaviour at infinity in the upper and lower half-planes

1(0‘)’“032<111("‘)3‘37;)7 % — 00,00 € CF, argo € (—m, 7).

Now we can establish the asymptotics of the function In X («) at infinity

+
In X (@) =22 Ino+ <L+ O(0?), aso— o0, o€ CF
T T

where

it = [ (o - onp ) ap 7.

The asymptotic expression for X («) itself takes the form

+ Ho
—zlno(

In + 2
1_/10_“ C_l Llnza_i_c

_ (i) In® o
X(o) = o i 2mlo? U 2y +0O

+
- as o — 00, o€ C™.
2n2a? o’ )’ ’

It follows from Egs. (3.25) and (3.26) that the asymptotics for @*(a) and @ () are given by

& (0) = Za’(’"“) Ze}fj o, o— o0, a€C”, (3.30)
m=0 j=0
where e are constant coefficients. In the text below we shall use several first terms of the expansions (3.30),

mj A .. .
and restrict ourselves to the coefficients e, e}, and ej;. These quantities are given by
= 1
_ . _ 0 —
€y = —1 E X, €] = =€y
p 7

and
N — —
e+:i2dk+@ e+feil
) k)
00 ,uk:I U 11 ;
1 & 1 & cf
eTOZ——deOCk—F—deXk OCk—|——l .
'uk:l 'uk:l n

Hence, as x — 40, the function y(x) admits the following asymptotic expansion
2(x) = A + Ayox + Apx In x + O(x*In*x), (3.31)

where
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1 N
Ago :; de(l - Xi),

k=1
1 & 1 L
Ay =— E d X, | —r— LU [
0 I k{ak+ k{”r ak+”( /)}}’
Ho =
A :——E di.X
11 i £ k<Ak sy

r= [ TG = 2np)| g,
[ [ ~enn)

and y is Euler’s constant (y = 0.57721566...).
Here we have used the following relations between the coefficients A4, and e;j

(3.32)

it o+
/100——16007 /111—611,

i
Ay + An (2+ 1 - V) = —ej,

which can be obtained if we take into account formulae (3.27) and

- irk+1) .
Ik(a):/ elarfkd,[:&e(mﬂ)k’
0

(xk+l

Ry ir(k+1) . 1 a
Li(a) = /0 et Intdr = l(akij)e(m/z)k<— “/—i-; E—i—%l— 1110()7 0 <argo <m.

The last relation follows from formula 4.352(1) (Gradshteyn and Ryzhik, 1980). Alternatively, it can be
reduced from the previous relationship in the limit,

N/ -1
Li(o) = lim Lip(@) = (%) .
p—0 ﬂ
Next, we consider the derivative dy/dx, as x — +0. It has the logarithmic singularity characterised by the
following asymptotics

d
a;{(x) ~ Aplnx+0(1), x— +0. (3.33)

The case when x — —0 requires the knowledge of function ¥/(x) (see Eq. (3.13)). It has the asymptotic
representation

lp(x) NMO() —Mlox—M“xln(—x) +7 X — —0, (334)

obtained in a similar way to the one used for the function y when x — +0. Here, the coefficients My, M
and M, are defined by

N
My = deXk, My = —@Mom

T
=1 (3.35)

N
-
Mlozzdek[;—ak‘f‘ﬂo(l -7\

=1 n
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It follows from Eq. (3.13) that
1 1 &
ﬂ40:;@F®—¢00D:p§:@G—XD:xH®,
k=1

and therefore, the displacement jump [u](x) is continuous at the crack tip (x =0). Moreover, in the
neighbourhood of the point x = 0 the function y(x) admits the following expansion

1(x) = Ago + Ajox + ApxInfx| + -+, x—0. (3.36)
For the derivative y/'(x), the expression (3.34) yields

W' (x) = =My In(—x) + O(1), x — —0. (3.37)
From Eq. (3.36) we deduce

7 (x) = A Injx|+0O(1), x—0. (3.38)

Since the displacement jump y(x) is continuous at x = 0, and the function (x) is discontinuous,
lp(—’—o) = 03 w(_o) = MOO # 07
we conclude (see Eq. (3.13)) that the traction

Ou Ou
%@®=ma@&m=ma@rm

is bounded but discontinuous at the crack tip,
[O-ZY(xﬂ 0)];zt8 - _l//(_()) = —Moo.

The formula (3.38) shows that the stress component o.,(x,0) has the logarithmic singularity at x = 0.

4. The Neumann problem for a strip with a semi-infinite crack along the imperfect interface

The formulation is similar to Section 3, with Dirichlet boundary conditions on the upper and lower parts
of the strip being replaced by the homogeneous Neumann data (see Fig. 3). The unknown function u(x,y)
satisfies the Eq. (3.1) and the contact conditions (3.3) and (3.4). Instead of Eq. (3.2), we assume that

Ou Ou

- — " (x.—b) = . 4.1

g (10) = 5 (1, —b) =0, x| < o0 (4.1)
We seek the solution in the class of functions with the finite energy integral (3.5) and with the following

behaviour at infinity

|u<x7y)| <Cla as x — —oQ,

and

lu(x,y)| < C2e™™, as x — +oo,
uniformly with respect to —b < y < a, where Cj, C, and ¢ are positive constants. To specify the solution
uniquely, we impose the following orthogonality condition

/_OO %Z(x, +0)dx = 0. (4.2)

o0
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4.1. Analysis of the Wiener—Hopf functional equation

The choice of the above function class ensures the existence of the Fourier transform u,(y) defined by Eq.
(3.9) in the strip —d < Ima < 0.

Following the same pattern as in Section 3 we consider two auxiliary formulations in the upper and the
lower parts of the strip and obtain the following functional equation of the Wiener—-Hopf type

O (o) = G()[u@" (o) + P~ ()], ael, I'={o:Imo=—3)€ (—0,0)},
where
B u cothaa cothob
G(a)l+a< ™ + 0 ) (4.3)

Here the constants g, 1, and p_ are the same as in Section 3. The functions @* () and P~ («) are defined by
Egs. (3.15) and (3.17): &"(«) is analytic in the domain D*, and @ («), P~ («) are analytic in D~, where

D" ={o:Ima> -8y}, D ={o:Ima< —dy}.

Here, the quantity J, > 0 has been chosen in such a way that the strip {—0dy < Ima < 0} does not include
any roots of the function G(x).

The function G(«) has the second-order pole at the point « = 0 € D*. In order to compute the increment
of @ = arg G(a), we deform the contour I' to the shape shown in Fig. 4. The positive direction of contour I
is chosen in such a way that the domain D" is on the left. We consider the following points on the deformed
contour

AT 0 a= oo —i0,
Aoil ac::téo—iO,

AT 0 a=—=(F1—1),

1 \/5( )
A o= —50i.

D+

r
Az AL
D_
Oc(,o'i

Fig. 4. The contour I
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At the starting point 4__, the function G(«) = 1. At this point, we set @ = 2n. As « runs from 4_ to 4,
the argument © of G(x) does not change. As the radius J, of the circle in Fig. 4 tends to zero, the value
G(4;) behaves as G(4;) ~ 6 *u;, where g, = u(1/ap, + 1/bu_). As o travels from 4; to 4;, the argument
of the principal part of G changes from 2= to 37/2, and for small dy, the real and imaginary parts of G(4;)
have the following leading terms

Re G(4]) ~1, ImG(4]) ~ —’;—121.
0
Next, the argument @ reduces further down to 7 at the point 4, and G(4) ~ —u,/5; as 3y — 0. In a
similar way it can be shown that, as 6y — 0,

Re GUf) ~ 1. ImGA]) ~ 6 m, Ol ~3.
G(A(J)r) ~ 5(?/‘1) @lgg:Ag =0,

GAL) =1, O|_, =0.

o0

Thus, we have shown that arg G(a) changes from 2z down to 0 as « travels from 4 to A} along the
contour I (see Fig. 5). According to the definition of the index of the Riemann boundary value problem
(see Gakhov, 1966), it is equal to

k = —ind; G(a) = —%[arg G(o)], = 1.

It shows that the solution of the Riemann boundary value problem (4.3) will be specified up to an ar-
bitrary constant. We take into account that

o—1
pe :2
|:dl"ga+i:|r T,

and we introduce the quantity (o + 1)~'(x — i)G(«) which satisfies the condition

. The i 1ma§e of the\
' deforme contour \ 1

The image of the |
Jundeformed contourl'
Pruiy /

Fig. 5. The parametrically defined function G(«), with o travelling along the contour I'.
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o (500 -0

and can be factorised as follows

i—;;G(t) :);—8, tel, (4.4)
where

1 t—i dt
+ - +
X (a)exP{Zni/Fln(I—i—iG(t))t—oc}’ o€ D™

It follows from Egs. (4.3) and (4.4) that
S (Ot —DX () +P () =pudt ()t +1)XT() + P (), teTl, (4.5)
where ¥*(¢) are the one-sided limits of the function
1 DX (8)P~
W(a):—,/—(““) WP 4, yechr.
27 Jp t— o

Compared to Eq. (3.22), in Eq. (4.5) we have additional factors ¢ F i in front of X*. Consequently the entire
function is bounded at infinity and is equal to a constant C everywhere in the complex plane. Thus, the
functions ®* are given by

iy C—¥"(a) N
P = e *€Ph
o C—Y (o) 3
() (a)—m, aeD.

The constant C is determined by the condition (4.2) that can be rewritten in the form
ud*(0) + P (0) =0,
where P~(0) = ffoo p(x)dx is finite since the external load p(x) is integrable on (—oc0,0). We have
C=%*0)—iX*(0)P (0).

As in the previous section, we consider the particular case when the applied load is represented by Eq.
(3.24). Then the solution of the Wiener—-Hopf problem (4.3) is given by

L N 1 O{d,?
¢ (a)_ﬁza—iak{dk_m}’

o (o) = — > % (4.6)

(0 =X~ (o) = oy (o0 — o)

where d) = di(oy + 1)X;, Xy = X" (io). Analysing asymptotics of &*(a) as o — oo, o € C* we obtain the
representation of the function y(x) as x — 0. The asymptotic formula is the same as in the previous section
(see Eq. (3.36)) with the different coefficients Ay, 419, 41;. We confine ourselves to give the principal co-
efficient

A —lzN:d(l X“"“) (4.7)
00 = — k| 1 — Ak . ‘
'uk:I Ok
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As in the previous section, it is observed that the shear stress o.,(x,0) has the logarithmic singularity at
x =0 and a,,(x,0) possesses a discontinuity of the first kind.

4.2. The displacement jump

The functions ¥(x) and y(x) are determined as the inverse Fourier transforms

L - —iox
Y(x) = {6717 Jr @ (2)e ™ da, ii 8 s

and

1(x) = {‘7(!#()6) —-p(x)),  x<0

. 4.
L[ o (@)e=dy, x> 0. *9)

Substituting @~ from Eq. (4.6) into Eq. (4.8) we continue analytically X~ («) into D* (see Eq. (4.4)) and
observe that the integrand has a simple pole at the point o = 0. Using the residue theorem we obtain

[p(x) =4+ deG(iOCk) Xt — i ﬂ < : %(af’l()),x) +

k=1 n=1 o\ Ky

ig?(bf}”,x)), x <0, (4.10)
n

where

and

: N 0
en* cpdy,

(ew + D)X *(icy) = (cn — o)

F(cp,x) =

The positive coefficients o; are the same as in the previous section (see formula (3.24)), and the constants
0)

a, b are given by
a® ="" po =TT
a b

In contrast to the Dirichlet problem studied in the previous section, the functions (x) and y(x) do not
vanish as x — —oo:

Y(x) =4+ 0(e™),

1
1(x) = — AT O(e™),

where
A = min{oy, n/a, n/b}.
For positive x, the function ¥ vanishes (see Eq. (4.8)), and y is determined by

0 7(;—(0> X N

i e ")
X(x) = Z B () ; Z ©

pAS X (—i0) (o) + )G (~iay)) = (o) + o)y

Here —ic”) denotes the roots of the function G(a) (see Eq. (4.3)) in D~. As x — o0, x(x) vanishes ex-
ponentially:
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©
1(x) =0(™ "), x— 4oo.
We note that 6(10> determines the range of change of radius of the semi-circle on the contour I" (see Fig.

4):0 <8y <ol

5. Infinite plane with a semi-infinite delamination crack

Consider an infinite two-phase plane with the line of imperfect interface along the x-axis. A semi-infinite
delamination crack is introduced on (x,y):y =0, x < 0 (see Fig. 3). The problem of anti-plane shear is
formulated as follows. The displacement function u satisfies the Laplace equation

Viu(x,y) =0, in R*\ {y =0},

the contact conditions

Ou Ou
Uy == = MH_ = )
I - Wl
Ou
Uy =— = ulu], forx >0,
iay y==0

and the following boundary condition on the crack faces

Ou
Auj:@ :p(X), x < 0.

y==x0

Here, the right-hand side p(x) is chosen in such a way that the problem has the solution with the finite
energy integral (3.5).

Taking the Fourier transforms with respect to x (see Eq. (3.9)) and following the same pattern as in
Section 3 we obtain the functional equation of the Wiener—Hopf type on the real axis:

P (o) = G(a) (u®" (@) + P~ (2)), € (—00,+00), (5.1)

where G(«) = 1 + (po/]2|). We note that the function G is real and positive on the real axis, and can be
factorised in the form

where the functions X* (o) are the limiting values of

X(oc):exp{ﬁ/_:C In (1—}-%)) ﬁd_ﬁa}. (5.2)

As in Section 3, the relationship (5.1) is reduced to the form (3.22), where the functions X* are defined by
Eq. (5.2). The solution of Eq. (5.1) is given by Eq. (3.23). To obtain the behaviour of the displacement in a
neighbourhood of the crack tip and at infinity, we analyse the solution @* (), & (o) as « — oo or o — 0.

In the vicinity of the crack tip, the behaviour of the displacement is similar to the one discussed
in Sections 3 and 4 (see Eq. (3.31)). The qualitative difference between these two cases is observed
when x — —oo. In contrast with Sections 3 and 4, the functions X* are characterised by the following
asymptotics
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X (o) = (—ior) ™2 (,u(l)/z + O(l)) aso— 0, 0 €C”,
12( 172 (5.3)
wa):@@/(%”A+oa» as o —0, 6€C .

As in the previous two sections, we consider the special case of applied load specified by Eq. (3.24). Then
the formulae (3.25) and (3.26) can be used to determine the asymptotics of functions ¢*(x) at the point
o=0:

ot () ~B,, a—0, acC’, & ()~ (i) "B, 0a—0, aeC, (5.4)

where
1 L dy 12 dy
B, = —— % and B. =Y ZX " (ioy).
+ #;ka Hy ;Oﬂk ( k)

Using the definition (3.15) and the second asymptotic formula (5.4) we obtain the asymptotic behaviour
of Y(&) asx — —c0
B_

o212 55

¥ (&) \ﬁ(ﬂ : (5.5)

To derive Eq. (5.5), we have used the Abelian type theorem. Thus, due to Eq. (3.13), the function y
characterising the displacement jump has the square root asymptotics at infinity

B_ _
2(x) ~ ———=(—x)""? x5 —o0. (5.6)

Ve

As x — 400, it follows from Eq. (3.26) that the function y(x) decays algebraically
1(x) = O(x), x — foo.

We note that the function y, specified in the previous sections for a finite strip, decays exponentially as
X — +00.

6. Plane strain problem for a strip with a finite crack along an imperfect interface
We consider the domain with the same geometry as in Section 3 but with the crack along the imperfect

interface being finite (see Fig. 6). Let the displacement vector u = (u,v) satisfy the homogeneous equili-
brium equations

Viu + VV-u=0 in #,
1 - 2Vi
where # = {(x,y): x € R, y € (=b,a) \ {0}} and the subscript “+” is allocated for the upper layer
0 < y < a, and the subscript “—"" corresponds to the lower layer —b < y < 0; v, denotes the Poisson ratio

of the material of the upper and lower layers. Homogeneous traction conditions are posed on the upper and
lower parts of the boundary

T,=0,=0 on%4" and 4,

where 27 = {(x,y): x € R, y=a}, % ={(x,y):x€R, y=—b}. The traction conditions are specified
on the crack faces

Ty = f1(x), o,=/fax) as|x|<e, y=0, (6.1)
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y

a Bt
Crack
_— T
Imperfect interface Imperfect interface *
Lb B~

Fig. 6. Strip with finite crack along the imperfect interface.

and the interface conditions are given outside the crack by

Ty (x,0) = oy [u] + oua[v],
ay(x, 0) = 0612[14] + Oﬁzz[l)] (62)
[0, =[ty] =0 as|x|>¢, y=0.

Here
[g] = g|y:+0 - g|y:70.

We seek the solution with finite elastic energy, and assume that the displacement field decays at infinity.

6.1. The system of integral equations

We introduce the following notations for displacement jump components
1) =[W(x), nk)=pk), <o, (6.3)
and for traction components
o(x) =0,(x,0), t(x) =14(x,0), [|x]<oo.
Let U denote the Airy function. Then the stress components and derivatives of displacements are given by

eu o ou @

e ax_@yz’ TXy__@x@y’

and
Ou o*U o*U
2, —=(1—-vy)—— v, —
e ox (1=vs) 0y? ST
v o*U *U

2'uia: (1 _Vi)W_v:ta—yz7

o, oy _ v
He dy ox/)  oxoy’

where u, denotes the shear moduli of the material in the upper and lower parts of the composite strip.
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First, we consider the upper part of the strip (0 < y < a). The function U satisfies the boundary value
problem

AU(x,y) =0 |x]<oo, 0<y<a,

627U762U70 | < _
2 oxoy oo y=4a,
eu_ o

axz—a(x), —axay:r(x), |x| < oo, y=0.

Taking the Fourier transform with respect to x

w@wi/mUuJWWm

we obtain
U (y) = 202U (y) + @' U, () =0, 0<y<a, (6.5)
U,(a) = Ul(a) =0, (6.6)
—2?U,(0) = a,, iaU.(0) = 1,, (6.7)

where a,, 7, denote the Fourier transforms of tractions. The solution of the system (6.5)—(6.7) has the form
U,(y) = Cycosh(a — y)a + Cysinh(a — y)a + Cs(a — y) cosh(a — y)o + Cy(a — y) sinh(a — y)a,  (6.8)

where the constants C;, C,, C;, C4 are given by

Cl = Oa
asinh(oa) sinh(aa) + oa cosh(aa)
CZ = Ty — ()
iod (o) od(aa)
C3 = —OCCz,
c asinh(oa) sinh(oa) — oa cosh(oa)
= — _

d(ea) i0d (oa) o
and d(f) = sinh® § — f.

We need the displacement components on the upper boundary of the interface. Relationships (6.4) and
(6.8) yield the following expressions for the Fourier transforms

(1 — 2v,)sinh*(aa) 4 o2 2(1 —vy)1,

2o u(+0) = d(ua) 7 id(oa)

(0a — sinh(aa) cosh(aa)),

(1 —2v,)sinh*(aa) + o2a? C2(1=vy)a,
id(oa) o d(aa)

In general, one can add arbitrary rigid-body translations and rotations. Here, we have assumed that
these terms are equal to zero, which is consistent with the assumption of decay at infinity introduced at the
beginning of the section.

In a similar way, one can write the boundary value problem for U, in the lower part of the strip and
obtain the Fourier transforms of the displacement components u,(—0) and v,(—0) which have the form
(6.9) where a should be replaced by —b and u,, v, should be replaced by u_, v_. Thus, the Fourier
transforms of the functions y,, y, (see Eq. (6.3)) are

2o, v,(40) = (0a + sinh(aa) cosh(aa)). (6.9)
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ia%lo{ = —g(OC)Ua + ih_(a)fa,

6.10
75, = —ih ()0, + 800 (610
where

(@) = Kt sinh?(aa) + K} o?a® KL sinh®(ab) + K o2b? 6.11)

8= d(xa) d(ob) ’ '
k5 (2oa £ sinh(20a)) k5 (20b £ sinh(2ab))

h =2 2 6.12

:t((x) d(oca) + d(OCb) ’ ( )
Ki:L Ki:1—2vi Kizl—vi

O 2uy’ : p, P 2py

Next, we consider the interface conditions (6.2). We introduce the unknown functions ¥;, ¥, in such a

way that
Ty (%, 0) = oty [u] (x) + oz [v](x) + P (x), 6.13)
a,(x,0) = o [u(x) + om[v](x) + Pa(x), [x| < oo,

and note that supp ¥;(x) C (—¢,c), j =1, 2. In terms of the Fourier transforms, Eq. (6.13) can be written
as

Ty = 011 )15 + %120, T 'Plom

0y = 021y + 02200, + Paus (6.14)
where

v~ [ WO j-12 (6.15)
Then, instead of y,,, x,, in Eq. (6.14) we substitute expressions (6.10) which yield

Gy = A_(f) {(o12ih_(o0) + 0228 (20)) V1o + (it — Toy1 (o) — 0128 () Vo b, (6.16)

Ty = Ai(o;) {(on1g(ax) + opailry (o)) Woy — (o + otypg(ar) + opaifry () P1a}, (6.17)
where

A(or) = —[o18(e) + onaihy ()] [orih (o) + oaag ()] — [iot + o128 () + omaihey (o0)]
X [ioe — otyyih_ (o) — oclzg(oc)]
= o’ + {g* (o) + hy(a)h_(o) {0, — o100 } + ompothy (o) — o0t (ar). (6.18)

Applying the inverse Fourier transform, using Eq. (6.15) and changing the order of integration we get
the integral representations of traction components

/{% V(& = x) + Vo)1 — x)}de,
(6.19)

x) :/_ {?’1(5)[21(5 —x) + Y’z(é)lﬂ(é_x)}dé’ |x| < 09,
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where
1 o0 )
ly(t) = 5 / Ppii(2) €™ dor, (6.20)

Pl = o {145 800 + @),

1o .
pia(e) = ——{ong(e) + apihy (2)},
A(a)
iy (6.21)
pa() = 1) {onaih (o) + a2g ()},
o o1 %12
pu(a) = %{1 - Th—(“) - Eg(“)}-
Considering the system (6.19) on the interval (—c, ¢) and using Eq. (6.1) we obtain the system of integral
equations

2 ¢
Z/ V()& —x)dE = filx), k=12, [f<ec (6.22)
Jj=1 J=¢

6.2. Analysis of the system of integral equations

First, we analyse the asymptotic behaviour of the kernel functions /; (& — x) as & — x. We note that 7;(¢)
are singular at ¢ = 0. To obtain the structure of the singular terms, we need the asymptotics of the functions
Pin () (see Eq. (6.20)) as & — 0 or o — oo. Direct calculations show that

6 (K3 K;
s~ (F5)

12 (k3 x5
h+(“>'“§<_+ﬁ :

a3

4 (k3 Ky

ho(o) ~ = (f*f)’

as o — 0.

It follows from Egs. (6.18) and (6.21) that

A() =O(™), «—0

and
pi(2) =0(?),  pi(e) = O(),
() =0(), pn(x) =0(#), o—0.

The relationships (6.23) provide the convergence of the integrals (6.20) in the vicinity of & = 0, uniformly
with respect to ¢. On the other hand, at infinity we have

gla) ~A_, hy(o0) ~=£A:, h(a) ~FA;, o— too,

(6.23)

where

AL =2(k5 +K5), A=K — K.
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The function 4(x) is characterised by
A(o) ~ o + (og + o) Ay |o] + (A2 — A2 ) (g0 — 07,), o0 — Foo0.
Hence, the functions p;; possess the asymptotics

%12

11 1
= — A ——A1 —
(%) 1+io< ] ++O(a2>7

po(a)=1- %2/17 TZTA++O(1>

10(11

o 1
pi(a) = 7/1_ |ITA++O( )

1o o 1
pu(e)=—=>A~ |ITA++0( )

Taking into account the relationship

1 - ioct _
% 7006 doc—5(t),

where 6(¢) is the delta function, we obtain
La(t) = 0(t) + [ (1), k=12,
where
0 L[~ iot
la (1) = e 700Pkk(°‘)e do,
P(®) = pu(er) = 1.

We note that [9,(¢), 15,(¢), 112(¢), l»1(¢) have logarithmic singularities as # — 0. To obtain the logarithmic
terms explicitly, we write

1 * io
O

1 " %12 0611 1 %12 011 i
md . __A 1xtd . Ly L mtd
/p“ i /( BN ) T on (m o] % "

where L = (—oo, —1) U (1,4+00). The first two integrals in the right-hand side converge uniformly for all
real ¢, whereas the last integral diverges at ¢t = 0. Namely,

1 fat 1 > si 1
e—doc—fsgnt/ wd‘c:—fsgntsi(M),
| T

2n J, T T

el * cosT 1
— ——dt = ——ci(J¢]),
AT R A i)

where si(x), ci(x) are the sine and cosine integral functions
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)k+1x2k 1

T 00
- E“L; 2k = 1)k — D)’
l)l‘x2k

ci(x )—v+logIXI+Z KA
and y is the Euler constant. Thus,
I (¢) = 6(¢) +%oc11/1+ log || +%o¢12A_sgnt + 11 (1),
where 1} (¢) is continuous on the whole real axis. In a similar way,

1 1 -
lzg(t) = 5([) + Eazz/h, log |[| — Eoclz/l_sgnt + 122([),
1 1
llz(t) = EOC12A+ 10g |l| — —0611/1 Sgl’lf + 112( )
1 1 .
121 (t) = EO{12A+ 10g |t| + EO(zzA_Sgnt + 121 (l),
where the functions /;(¢) are continuous. Hence, the system (6.22) can be written in the form
2 .
¥, (cx) +CZ / {FJ log |& — x| + A (& — x)}‘]’j(cf) dé = filex), x| <1, k=1,2, (6.24)
j=1 /-1
which is a Fredholm system of the second kind. Here

‘ 0o 1) 2s
H (1) = Py logc+*/ Py (@ Wdo“r( 1) ”k/sgn“i(ct|)+[2j<y+z(2ls)(2(§)?>’

ﬁk]()

|

(- l)knkj

Piy(®) = py(®) — 0 + &(2) +

3

I, Jof >1

‘= {o, o] < 1,
[))kj = OijA+7
M =ond_, np=oand,

Ny = oA, Ny =oapd_.

We note that pk (o) = O(a?) as o — =+oo0.

To prove the boundedness of the solution at the point x = 1 we admit an integrable singularity for the
functions ¥y (cx) at this point

Yi(ex) ~ /(1 =x)", x—1-0; —-1<a<0. (6.25)
The behaviour of the integral with the logarithmic kernel at the end x = 1 is described by

T cot ot
o+ 1

1
/ log |y — x|(1 — y)*dy = (1 —x)""+¢p(x;0), x—1-0, (6.26)
-1
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where ¢(x; ) is bounded in the neighbourhood of the point x = 1. Then we substitute formulae (6.25) and
(6.26) into Eq. (6.24)

N
. . cot mo ,_
N1 =x) +c2{ﬁkju+l N1 = x)"! +¢kj(x;a)} = filex), x—1-0,

J=1

where ¢;;(x; «) are bounded as x — 1. The left hand-sides of the last equations are bounded if and only if
Ny = A5 = 0. It means that the functions ¥ (cx) may possess logarithmic singularities or be bounded at
the end x = 1. Again, we admit

V(ex) ~Miln(l —=x), x—1-0

and take into account the behaviour of the integral

/1 logly — x|log(l —y)dy = C(1 —x)In(1 —x) 4+ ¢y(x), x—1-0 (6.27)

where C'is a constant and ¢, (x) is a bounded function as x — 1. In a similar way, system (6.24) and formula
(627) give M] = M2 =0.

Thus, this analysis shows that the functions ¥;(cx), ¥2(cx) possess neither logarithmic nor power sin-
gularities at the end x = 1 and x = —1 (obviously, the analysis of the functions ¥, ¥, at the point x = —1 is
similar to the previous one for x = 1), i.e. the solution of (6.24) is bounded at the ends of the interval
(—1,1). Moreover, if we take into account the interface conditions (6.13), the traction conditions (6.1) and
the system (6.24), we find that the displacement jumps y,(x) = [u](x), y(x) = [v](x) are continuous at the
points x = +¢ and the stress components a,(x,0), 7,,(x,0) are bounded and discontinuous at the ends
x = =£c.

7. Discussion and numerical results

First, we summarise the results of the analysis of the scalar formulations (see Sections 3-5) associated
with the heat transfer problems (or anti-plane shear). We have presented the exact solutions of problems on
cracks along imperfect interface boundaries. The authors are not aware of similar results published in the
literature relevant to this work. The asymptotic analysis shows that the solution (the temperature or the
transverse displacement) is bounded and its tangential derivative is characterised by a weak logarithmic
singularity at the crack tip; the normal derivative of the solution is bounded. The behaviour of temperature
(or displacement jump) at infinity depends on the geometry of the whole domain and the type of boundary
conditions on the exterior contour. We have shown that the case of an infinite plane is qualitatively different
from the cases involving a strip with a crack: in the latter case the solution is either bounded or decays
exponentially at infinity, whereas for the problem involving an infinite two-phase plane we deal with power
asymptotic expansions at infinity. In particular, the constant 4 in formula (4.10) has been evaluated
explicitly to characterise the displacement (or temperature) jump at infinity along the crack when the
Neumann boundary conditions are specified on the upper and lower boundaries of the strip. This problem
can be considered as a model boundary layer formulation for a singularly perturbed domain involving a
crack in a thin rectangle.

Next, we analyse a plane elasticity problem for a two-phase strip with a finite crack. A numerical
solution is presented for the system (6.24). The numerical algorithm employed here is described in the
Appendix.

The elastic layers are characterised by the Young’s moduli £, and by the values v, of the Poisson ratio.
By 2+, p., we denote the Lamé constants of the elastic materials given by



Y. A. Antipov et al. | International Journal of Solids and Structures 38 (2001) 6665-6697 6691

hy = Exvy __E

CT 0 —2n) T 20 )
and

5 Eyvo __ b

A1) —2vw) M 2001w

are the normalised Lamé constants related to the middle layer. For all the tests we considered the upper
material to be aluminium with the following elastic moduli (see Adams et al., 1997)

E+(A1) =170 GPa; Vi(Al) = 0.3.

The lower material can be either aluminium, CFRP or brass, the last two having the following elastic
moduli

E—(CFRP) =135 GPa; V_(CFRP) = 03,

E_gy =100 GPa; v_gy = 0.25.
The interface layer is assumed to be made of FM 1000 and characterised by the normalised moduli,
E=10GPa; v=04
whereas the real values are given by
Ey =124 GPa; v, =041,

and thus here € = 0.124. The parameters that are involved in the interface condition in this case have the
following values,
oy = 0.35 GPa; Oy = 2.3 GPa7

and by the approximation (2.11) (see Appendix), a1, = o = 0.
Several cases of applied load are considered and listed in the Tables 1 and 2.

Table 1
Symmetric case (a =b=c=1)
Case Type of load Lower layer
Al fi=0;f=—1 CFRP
A2 fHi=0;f=-1 Brass
A3 fi=Lfi=0 CFRP
Ad Si=1 /=0 Brass
Table 2
Combined effect (f; = 1; f, =0)
Case Geometry Lower layer
B.1 a=c=1;b=100 Aluminium
B.2 a=b=c=1 Aluminium
B.3 a=c=1;b=100 Brass

B.4 a=b=c=1 Brass
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Fig. 7. The displacement jump versus x for a =b =1, ¢ =1 in the cases (f; =0, f» = —1): A.1 (Al, CFRP); A.2 (Al, Br). a. (---)

[u] (AD); (++4) [u] (A2); b. (--) [v] (AD); (+++) [v] (A.2).

x10™ a

A = -]
T

Fig. 8. The displacement jump versus x for a =b =1, ¢ =1 in the cases (f; = 1, f =0): A.3 (Al, CFRP); A4 (Al, Br). a. (- —-)
[u] (A.3); (—) [u] (A.4); b. (= =) [)](A3); (—) [v] (A4).

Figs. 7 and 8 include the graphs of the displacement jump components evaluated for the symmetric

structure involving the elastic layers of the same thickness.
The results are presented for the normal and shear external loads and different values of elastic moduli.

We note that the negative values of the vertical displacement jump correspond to overlapping of the phases
on the imperfect interface. This is a consequence of the linearisation of the model. However, both negative
and positive values of the tangential displacement jump presented in Figs. 7 and 8 make sense physically. It
is noted that the displacement jump is continuous in the vicinity of the crack ends.
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Fig. 9. The stress components along the interface versus x fora=b=1,c=1.a. (---) 1, (A.1); (+ ++) 7, (A2); b. (---) 0, (A.1);
(+++) o, (A2).

0.1

Fig. 10. The stress components along the interface versus x fora = b =1,c = 1. a. (——-) 17, (A.3); (—) 7, (A4); b. (———) 7, (A.3); (—)
o, (A4).

The corresponding graphs for stress are given in Figs. 9 and 10. As predicted the stress components
0,(x,0), 7, (x,0) are bounded and discontinuous at the ends of the crack.

Figs. 11 and 12 show the graphs of displacement and traction components for the case of layers of
different thickness and elastic moduli. Only shear load cases are considered. It is observed that the longi-
tudinal displacement jump takes its maximum value for the case of a symmetric strip when both layers have
the same thickness and elastic moduli.

The examples presented above are given for the purpose of illustration yet our algorithm has been
designed for a general smooth load and can take into account a wide variety of geometric parameters of
the structure. The interface layer can be anisotropic.
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Fig. 11. The displacement jump versus x for f; = 1, f; = 0, ¢ = 1 in the cases (Al, Al): B.1 (a=1, b=100); B.2 (a=b=1); and (Al, Br):
B3(a=1,b=100); B4 (a=b=1).a.(--) [u] B.1); (+ ++) [u] (B.2); (— —-) [u] (B.3); (—) [u] (B.4); b. (---) [v] (B.1); (+ + +) [v] (B.2);
(=) [o](B.3); () [v] (B.4).
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Fig. 12. The stress components along the interface versus x for fi =1, f, =0a. (---) 7, (B.1); (+ + +) 74 (B.2); (— =) 7, (B.3); (—)
Ty (BA4); b. (-+2) 0, B.1); (+++4) 0, (B.2); (- - -) 6, (B.3); (—) 5, (B.4).
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Appendix A

Here we present a brief description of the numerical approach that we use for the system (6.24) that is a
Fredholm system of integral equations of the second kind.
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Writing
P(ex,) =49, k=12, n=12,...,N,
2n—1
Xy= 1+ ”N . n=1,2,...,N,
2
yn:—1+ﬁ”, n=0,1,....N,

one can discretise the system (6.24) as follows:

2

Yilex,) + CZ Z /y,,, {% In|é—x,| + A y(E —x,,)} dEW(cxn) = filex,).

Jj=1 m=1

Thus, we arrive at the following linear system of algebraic equations
2 N
AP+ "N GUAD =B, k=12, n=12,....N (A.1)
=1 m=1

where the coefficients 2% and ¢ are given by

nm n
Vm
ki) —
Jﬂm -
y

m—1

{% In|é—x,| + A (€ —x,)| dE (A.2)

cﬁlk) = filex,), k=1,2.

Direct calculations show that Eq. (A.2) can be written in the following way:

B 2loge [
47 =2 G5, = ) o = 3 = 1) = (50 = ) Iy =3 = 1))+ 22 By [ Q)
(_1)k7]/q/ T ﬁkj 2y
t ] 2 ),
where
s+1 261 2s
g i ( 1) c {(ym —X,,) (ym—l _-xn) ]
l p—
— (2s — 1)(2s)!
s > ( 1)S(:2v |:(ym xn)QS‘H - (ym—l _xn)25+li|
* ; 2s(2s + 1)!
(o e(0) 1 sin (%) uerr —x
O(a) = {Pk/‘(o‘) =+ (= 1)"%%*‘ ﬁkj%}io({]v) glelinx),
5oL k=
YN0 kAT
L, Xy >
I/an - _1; Xn < ymfl 9

07 Xn S (ym—l7ym>
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2m —1
T
The value of ffcoo QO(o) do can be obtained by using any numerical procedure. Here we use the trapezoidal
method. It is worth to mention that Q(a) € L;(—00, +00) and Q(a) = O(%) as o — +oo. The structure of
the functions py;(a), 4(a), g(a) and k4 (o) (see Eqgs. (6.11), (6.12), (6.18) and (6.21)) allows us to write them
in the form,
P (%) = Py (o) +ipg; (o), (A3)
where the real functions pj; are even and the real functions p;; are odd,
@) =2 [2h () + 1) piy (%) = — g (%)
Ph(o) = —ﬁalzlﬁr(o‘); Ph(a) = ﬁa)omg(fx)
Py (o) = gtsoah(a); p5 () = — 525 0028 ()
C CXZ o . (o] — 3
Ph() = A) (1 =h ()] py(e) = @Oﬂlzg(“)

tm:_1+

Thus, it turns out can that all the values @ff;j) in the system (A.1) are real. We substitute (A.3) into the
relationship for O(«) and obtain

/: 0w do = 2/0°° 0. (x)da,
where

O4(0) = { [p,fj(oc) — Oy + ﬁkjg(—a)} cosc(xy — x, )+ | = pi(o) + (- 1)%@@] sin ¢(x,, —xn)a}w.

o o

Once that the system (A.1) is solved we then can calculate the approximated values for the displacement
jumps [u](cx,), [v](cx,) along the crack,
1
[u](cx,) = . {omn[c) = AV — apa[cl? — AP},

1
[e](exa) = —{ = onafel) — AV] + oy [P — AP},

where oy, o2, 0 and oy, are the same as in Section 6 (see Eq. (6.2)) and o, = o000 — rx%z.
For |x| > ¢, the components of traction vector along the interface are
Txy = fi(x), Oy = fo(x),
where

2 N
Ji(Eez,) = C‘Z ZAE?@%;”*, (A.4)

Jj=1 m=1
and 2%)* coincides with 2'%/) when one substitutes x, by +z,, z, > 1.
Finally, we can also find the displacement jumps outside the crack,

(3) = - (omh(+ c2) — af( £ ez},

[v](£ez,) = oci*{ —apfil £ez,) +anfa( £ez,)}



Y.A. Antipov et al. | International Journal of Solids and Structures 38 (2001) 6665-6697 6697

For all the calculations, the matrix o;; is approximated by the matrix obtained in Eq. (2.11) by which it
can be seen that o, = oy,

o = % %2\ _ M 0
v o1y O 0 A + 2‘11 ’
The quantities u and A are the normalised values of the elastic moduli for the adhesive joint treated in
Section 2.
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